axpy¶
Computes a vector-scalar product and adds the result to a vector.
axpy
supports the following precisions.
T
float
double
std::complex<float>
std::complex<double>
Description
The axpy routines compute a scalar-vector product and add the result to a vector:
y <- alpha*x+y
where:
x
and y
are vectors of n
elements,
alpha
is a scalar.
axpy (Buffer Version)¶
Syntax
-
void
onemkl::blas
::
axpy
(sycl::queue &queue, std::int64_t n, T alpha, sycl::buffer<T, 1> &x, std::int64_t incx, sycl::buffer<T, 1> &y, std::int64_t incy)¶
Input Parameters
- queue
The queue where the routine should be executed.
- n
Number of elements in vector
x
.- alpha
Specifies the scalar alpha.
- x
Buffer holding input vector
x
. The buffer must be of size at least(1 + (n – 1)*abs(incx))
. See Matrix and Vector Storage for more details.- incx
Stride of vector
x
.- y
Buffer holding input vector
y
. The buffer must be of size at least(1 + (n – 1)*abs(incy))
. See Matrix and Vector Storage for more details.- incy
Stride of vector
y
.
Output Parameters
- y
Buffer holding the updated vector
y
.
axpy (USM Version)¶
Syntax
-
sycl::event
onemkl::blas
::
axpy
(sycl::queue &queue, std::int64_t n, T alpha, const T *x, std::int64_t incx, T *y, std::int64_t incy, const sycl::vector_class<sycl::event> &dependencies = {})¶
Input Parameters
- queue
The queue where the routine should be executed.
- n
Number of elements in vector
x
.- alpha
Specifies the scalar alpha.
- x
Pointer to the input vector
x
. The array holding the vectorx
must be of size at least(1 + (n – 1)*abs(incx))
. See Matrix and Vector Storage for more details.- incx
Stride of vector
x
.- y
Pointer to the input vector
y
. The array holding the vectory
must be of size at least(1 + (n – 1)*abs(incy))
. See Matrix and Vector Storage for more details.- incy
Stride of vector
y
.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- y
Pointer to the updated vector
y
.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 1 Routines