dot¶
Computes the dot product of two real vectors.
dot
supports the following precisions.
T
T_res
float
float
double
double
float
double
Description
The dot routines perform a dot product between two vectors:
Note
For the mixed precision version (inputs are float while result is double), the dot product is computed with double precision.
dot (Buffer Version)¶
Syntax
-
void
onemkl::blas
::
dot
(sycl::queue &queue, std::int64_t n, sycl::buffer<T, 1> &x, std::int64_t incx, sycl::buffer<T, 1> &y, std::int64_t incy, sycl::buffer<T_res, 1> &result)¶
Input Parameters
- queue
The queue where the routine should be executed.
- n
Number of elements in vectors
x
andy
.- x
Buffer holding input vector
x
. The buffer must be of size at least(1 + (n – 1)*abs(incx))
. See Matrix and Vector Storage for more details.- incx
Stride of vector
x
.- y
Buffer holding input vector
y
. The buffer must be of size at least(1 + (n – 1)*abs(incy))
. See Matrix and Vector Storage for more details.- incy
Stride of vector
y
.
Output Parameters
- result
Buffer where the result (a scalar) will be stored.
dot (USM Version)¶
Syntax
-
sycl::event
onemkl::blas
::
dot
(sycl::queue &queue, std::int64_t n, const T *x, std::int64_t incx, const T *y, std::int64_t incy, T_res *result, const sycl::vector_class<sycl::event> &dependencies = {})¶
Input Parameters
- queue
The queue where the routine should be executed.
- n
Number of elements in vectors
x
andy
.- x
Pointer to the input vector
x
. The array holding the vectorx
must be of size at least(1 + (n – 1)*abs(incx))
. See Matrix and Vector Storage for more details.- incx
Stride of vector
x
.- y
Pointer to the input vector
y
. The array holding the vectory
must be of size at least(1 + (n – 1)*abs(incy))
. See Matrix and Vector Storage for more details.- incy
Stride of vector
y
.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- result
Pointer to where the result (a scalar) will be stored.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 1 Routines