herk¶
Performs a Hermitian rank-k update.
herksupports the following precisions:
T
T_real
std::complex<float>
float
std::complex<double>
double
Description
The herk routines compute a rank-k update of a Hermitian matrix
C by a general matrix A. The operation is defined as:
C <- alpha*op(A)*op(A) H + beta*C
where:
op(X) is one of op(X) = X or op(X) = XH,
alpha and beta are real scalars,
C is a Hermitian matrix and A is a general matrix.
Here op(A) is n x k, and C is n x n.
herk (Buffer Version)¶
Syntax
- 
void 
onemkl::blas::herk(sycl::queue &queue, onemkl::uplo upper_lower, onemkl::transpose trans, std::int64_t n, std::int64_t k, T_real alpha, sycl::buffer<T, 1> &a, std::int64_t lda, T_real beta, sycl::buffer<T, 1> &c, std::int64_t ldc)¶ 
Input Parameters
- queue
 The queue where the routine should be executed.
- upper_lower
 Specifies whether
A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.- trans
 Specifies op(
A), the transposition operation applied toA. See oneMKL defined datatypes for more details. Supported operations aretranspose::nontransandtranspose::conjtrans.- n
 The number of rows and columns in
C.The value ofnmust be at least zero.- k
 Number of columns in op(
A).The value of
kmust be at least zero.- alpha
 Real scaling factor for the rank-
kupdate.- a
 Buffer holding input matrix
A. Iftrans=transpose::nontrans,Ais ann-by-kmatrix so the arrayamust have size at leastlda*k. Otherwise,Ais ank-by-nmatrix so the arrayamust have size at leastlda*n. See Matrix and Vector Storage for more details.- lda
 Leading dimension of
A. Must be at leastnifAis not transposed, and at leastkifAis transposed. Must be positive.- beta
 Real scaling factor for matrix
C.- c
 Buffer holding input/output matrix
C. Must have size at leastldc*n. See Matrix and Vector Storage for more details.- ldc
 Leading dimension of
C. Must be positive and at leastn.
Output Parameters
- c
 The output buffer, overwritten by
alpha*op(A)*op(A)T +beta*C. The imaginary parts of the diagonal elements are set to zero.
herk (USM Version)¶
Syntax
- 
sycl::event 
onemkl::blas::herk(sycl::queue &queue, onemkl::uplo upper_lower, onemkl::transpose trans, std::int64_t n, std::int64_t k, T_real alpha, const T *a, std::int64_t lda, T_real beta, T *c, std::int64_t ldc, const sycl::vector_class<sycl::event> &dependencies = {})¶ 
Input Parameters
- queue
 The queue where the routine should be executed.
- upper_lower
 Specifies whether
A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.- trans
 Specifies op(
A), the transposition operation applied toA. See oneMKL defined datatypes for more details. Supported operations aretranspose::nontransandtranspose::conjtrans.- n
 The number of rows and columns in
C.The value ofnmust be at least zero.- k
 Number of columns in op(
A).The value of
kmust be at least zero.- alpha
 Real scaling factor for the rank-
kupdate.- a
 Pointer to input matrix
A. Iftrans=transpose::nontrans,Ais ann-by-kmatrix so the arrayamust have size at leastlda*k. Otherwise,Ais ank-by-nmatrix so the arrayamust have size at leastlda*n. See Matrix and Vector Storage for more details.- lda
 Leading dimension of
A. Must be at leastnifAis not transposed, and at leastkifAis transposed. Must be positive.- beta
 Real scaling factor for matrix
C.- c
 Pointer to input/output matrix
C. Must have size at leastldc*n. See Matrix and Vector Storage for more details.- ldc
 Leading dimension of
C. Must be positive and at leastn.- dependencies
 List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- c
 Pointer to the output matrix, overwritten by
alpha*op(A)*op(A)T +beta*C. The imaginary parts of the diagonal elements are set to zero.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 3 Routines