hpr2¶
Performs a rank-2 update of a Hermitian packed matrix.
hpr2supports the following precisions.
T
std::complex<float>
std::complex<double>
Description
The hpr2 routines compute two scalar-vector-vector products and add
them to a Hermitian packed matrix. The operation is defined as
A <- alpha*x*y H + conjg(alpha)*y*x H + A
where:
alpha is a scalar,
A is an n-by-n Hermitian matrix, supplied in packed form,
x and y are vectors of length n.
hpr2 (Buffer Version)¶
Syntax
- 
void 
onemkl::blas::hpr2(sycl::queue &queue, onemkl::uplo upper_lower, std::int64_t n, T alpha, sycl::buffer<T, 1> &x, std::int64_t incx, sycl::buffer<T, 1> &y, std::int64_t incy, sycl::buffer<T, 1> &a)¶ 
Input Parameters
- queue
 The queue where the routine should be executed.
- upper_lower
 Specifies whether
Ais upper or lower triangular. See oneMKL defined datatypes for more details.- n
 Number of rows and columns of
A. Must be at least zero.- alpha
 Scaling factor for the matrix-vector product.
- x
 Buffer holding input vector
x. The buffer must be of size at least (1 + (n- 1)*abs(incx)). See Matrix and Vector Storage for more details.- incx
 Stride of vector
x.- y
 Buffer holding input/output vector
y. The buffer must be of size at least (1 + (n- 1)*abs(incy)). See Matrix and Vector Storage for more details.- incy
 Stride of vector
y.- a
 Buffer holding input matrix
A. Must have size at least (n*(n-1))/2. See Matrix and Vector Storage for more details.The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
Output Parameters
- a
 Buffer holding the updated upper triangular part of the Hermitian matrix
Aifupper_lower =upper, or the updated lower triangular part of the Hermitian matrixAifupper_lower =lower.The imaginary parts of the diagonal elements are set to zero.
hpr2 (USM Version)¶
Syntax
- 
sycl::event 
onemkl::blas::hpr2(sycl::queue &queue, onemkl::uplo upper_lower, std::int64_t n, T alpha, const T *x, std::int64_t incx, const T *y, std::int64_t incy, T *a, const sycl::vector_class<sycl::event> &dependencies = {})¶ 
Input Parameters
- queue
 The queue where the routine should be executed.
- upper_lower
 Specifies whether
Ais upper or lower triangular. See oneMKL defined datatypes for more details.- n
 Number of rows and columns of
A. Must be at least zero.- alpha
 Scaling factor for the matrix-vector product.
- x
 Pointer to input vector
x. The array holding input vectorxmust be of size at least (1 + (n- 1)*abs(incx)). See Matrix and Vector Storage for more details.- incx
 Stride of vector
x.- y
 Pointer to input/output vector
y. The array holding input/output vectorymust be of size at least (1 + (n- 1)*abs(incy)). See Matrix and Vector Storage for more details.- incy
 Stride of vector
y.- a
 Pointer to input matrix
A. The array holding input matrixAmust have size at least (n*(n-1))/2. See Matrix and Vector Storage for more details.The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
- dependencies
 List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- a
 Pointer to the updated upper triangular part of the Hermitian matrix
Aifupper_lower =upper, or the updated lower triangular part of the Hermitian matrixAifupper_lower =lower.The imaginary parts of the diagonal elements are set to zero.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 2 Routines