rot¶
Performs rotation of points in the plane.
rot
supports the following precisions.
T
T_scalar
float
float
double
double
std::complex<float>
float
std::complex<double>
double
Description
Given two vectors x
and y
of n
elements, the rot
routines
compute four scalar-vector products and update the input vectors with
the sum of two of these scalar-vector products as follow:
x <- c*x + s*y
y <- c*y - s*x
rot (Buffer Version)¶
Syntax
-
void
onemkl::blas
::
rot
(sycl::queue &queue, std::int64_t n, sycl::buffer<T, 1> &x, std::int64_t incx, sycl::buffer<T, 1> &y, std::int64_t incy, T_scalar c, T_scalar s)¶
Input Parameters
- queue
The queue where the routine should be executed.
- n
Number of elements in vector
x
.- x
Buffer holding input vector
x
. The buffer must be of size at least (1 + (n
- 1)*abs(incx
)). See Matrix and Vector Storage for more details.- incx
Stride of vector
x
.- y
Buffer holding input vector
y
. The buffer must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix and Vector Storage for more details.- incy
Stride of vector
y
.- c
Scaling factor.
- s
Scaling factor.
Output Parameters
- x
Buffer holding updated buffer
x
.- y
Buffer holding updated buffer
y
.
rot (USM Version)¶
Syntax
-
sycl::event
onemkl::blas
::
rot
(sycl::queue &queue, std::int64_t n, T *x, std::int64_t incx, T *y, std::int64_t incy, T_scalar c, T_scalar s, const sycl::vector_class<sycl::event> &dependencies = {})¶
Input Parameters
- queue
The queue where the routine should be executed.
- n
Number of elements in vector
x
.- x
Pointer to input vector
x
. The array holding input vectorx
must be of size at least (1 + (n
- 1)*abs(incx
)). See Matrix and Vector Storage for more details.- incx
Stride of vector
x
.- y
Pointer to input vector
y
. The array holding input vectory
must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix and Vector Storage for more details.- incy
Stride of vector
y
.- c
Scaling factor.
- s
Scaling factor.
- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- x
Pointer to the updated matrix
x
.- y
Pointer to the updated matrix
y
.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 1 Routines